http://www.froninvest.com

纳米陶瓷涂层的制备及应用

  金属表面陶瓷涂层技术将基体金属材料和陶瓷涂层的优点结合起来,发挥综合优势,可以满足结构性能(强度、韧性等)和环境性能(耐磨、耐蚀、耐高温等)的需要。但普通陶瓷涂层存在脆性高、结合强度低、易出现裂纹等缺点,而纳米陶瓷涂层则由于晶粒细化,晶界数量大幅增加,材料的强度、韧性、超塑性等性能明显提高。


纳米陶瓷涂层的制备


制备纳米结构陶瓷涂层的常用方法主要有等离子喷涂、电泳沉积、热化学反应、微弧氧化、激光熔覆、磁控溅射镀膜等。


等离子喷涂的焰流速度快、温度快,特别适用于喷涂陶瓷等高熔点材料。与其它技术相比,用等离子喷涂制备纳米陶瓷涂层,工艺简单、选材广泛、沉积效率高等。


电泳沉积是一种温和的表面涂覆方法,可避免采用传统高温涂覆而引起的相变和脆裂,且电泳沉积技术适用于形状复杂的零件。电泳沉积是带电粒子的定向移动,不会因电解水溶剂时产生的大量气体影响涂层与金属基体的结合力。


热化学反应法制备金属基陶瓷涂层,是采用水基黏结剂,混以陶瓷骨料,搅拌成悬浮料浆,涂在经过预处理的金属表面上,阴干、高温固化处理而成,高温固化时发生热化学反应产生新的复合陶瓷相,亦称固相反应法。其优点是工艺简单,无需特殊设备,成本低廉,涂层与基体表面既有机械结合,又有化学结合;缺点是结合强度较低,涂层不致密等。


微弧氧化是在铝镁、钛及其合金表面依靠弧光放电产生的瞬时高温高压作用,生长出以基体氧化物为主的陶瓷膜层。反应在常温下进行,操作方面,易于掌握。


激光熔覆作为一种新型高效涂层制备工艺,以其凝固速率快,能够获得平衡状态下无法获得的优异组织等特点受到关注。它有利于目前纳米陶瓷涂层制备中材料晶粒过度生长、致密度不高等问题的解决。


磁控溅射镀膜通常利用氩气电离产生的正离子轰击固体(靶),溅出的中性原子沉积到基片(工件上),形成镀膜。


纳米陶瓷涂层的应用


纳米ZrO2热障涂层


热障涂层主要用于高温大气或热腐蚀性静态、动态气氛中,可明显降低涡轮部件表面温度,增加燃气轮机功率,提高热效率,在航空发动机上获得了成功的应用,并将扩展到柴油机以及汽车和摩托车的发动机中。纳米ZrO2涂层导热系数低,热膨胀系数相近,高温下稳定性好,是目前热障涂层的代表。


纳米WC/Co涂层


碳化钨/钴(WC/Co)金属陶瓷涂层是一种优良的抗摩擦磨损材料。纳米结构WC/Co涂层硬度高,结合强度好,具有良好的韧性,可应用于航空航天、汽车、冶金、电力等领域,用以增强基体金属的耐磨性以及磨损部件的修复。


纳米Al2O3/TiO2涂层


纳米Al2O3/TiO2涂层具有优异的强韧性、耐磨蚀性和抗热震性,适用于耐磨、耐蚀、耐高温、抗冲击等环境,已经在军事和工业中得到应用,美国海军将热喷涂纳米涂层作为新型抗摩擦磨损材料应用于船舶和舰艇。


纳米TiO2涂层


在钢铁基体表面制备纳米TiO2涂层,在光照射下产生的电子注入钢铁基体,使其电位低于腐蚀电位后可达到防腐蚀的目的。纳米TiO2光催化涂层可有效降解多种有机物消除室内有机污染气体,同时还能杀菌抑菌。


纳米生物涂层


研究表明,人的牙齿之所以具有很高的强度,是因为它是由磷酸钙等纳米材料构成的,因此人们希望通过构造纳米生物活性涂层进一步改善医用材料的力学性能及生物性能。


参考资料:

孙方红、马壮等.纳米陶瓷涂层制备技术的研究进展

武创、郗雨林等.纳米陶瓷涂层的性能及应用

宋子豪、孙耀宁.纳米陶瓷涂层的特性及研究现状


(中国粉体网编辑整理/初末)

注:图片非商业用途,存在侵权告知删除


(来源:中国粉体网)

郑重声明:本文版权归原作者所有,转载文章仅为传播更多信息之目的,如作者信息标记有误,请第一时间联系我们修改或删除,多谢。